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Abstract
Temperature dependent ultrasonic attenuation due to phonon–phonon (p–p) interaction,
thermoelastic loss and dislocation damping due to screw and edge dislocations have been
investigated in fcc (NaCl B1 type) structured group IVb and Vb monocarbides (transition metal
carbides, namely TiC, ZrC, HfC, VC, NbC and TaC) in the temperature range 50–500 K, along
the three crystallographic directions of propagation, namely [100], [110] and [111] for
longitudinal and shear modes of propagation. The second- and third-order elastic moduli
(SOEM and TOEM) obtained at different temperatures using the electrostatic and Born
repulsive potentials and taking interactions up to next-nearest neighbours, have been used to
obtain Gruneisen numbers, acoustic coupling constants and their ratios along different
directions of propagation and polarization for longitudinal and shear modes of wave
propagation. Temperature variation of the phonon relaxation time shows exponential decay.
The results have been discussed and compared with available data.

1. Introduction

Transition metal carbides (TMCs) are metallic compounds
with outstanding properties, e.g. they are extremely hard and
have very high melting temperatures. For instance, the melting
temperature of TaC (about 4200 ◦C) is the highest amongst
known materials. TMCs are chemically very stable and have
high corrosion resistance. Due to these properties they are
widely used in industry as cutting tools. They have also
potential applications in information storage technology (for
coating magnetic sheets), high power energy industry and
optoelectronics. Carbides of transition metals, with MX (M
= Ti, Zr, Hf, V, Nb and Ta, X = C) stoichiometry are usually
cubic, where the metallic atoms form the face-centred cubic
(fcc) sub-lattice, and nonmetallic atoms occupy interstitial
positions, forming the NaCl (B1) type structure [1]. Recently,
TMCs have attracted increasing attention among researchers
due to their excellent thermal stability and chemical inertness
to copper at elevated temperatures [2].

In the recent past, extensive work on phonon-related
properties, electronic structure, lattice dynamics and structural

and elastic properties of these transition metal carbides have
been done [1–8], but ultrasonic attenuation studies, which
provide very important information regarding microstructure
and other properties, have not been carried out on these TMCs.
So, we have chosen this important class of compounds to study
the temperature variation of ultrasonic attenuation and related
parameters. In the present paper, using simple potentials
namely electrostatic and Born repulsive potentials, SOEM and
TOEM have been obtained at different temperatures, which
in turn have been used to evaluate ultrasonic attenuation
and related parameters, namely Gruneisen parameters and
nonlinearity coupling constants, over a wide temperature range
of 50–500 K. Temperature dependence of the attenuation
behaviour has been given for longitudinal and shear waves
along different directions of propagation.

The study of temperature-dependent ultrasonic attenuation
plays a very important role in understanding the interaction
of ultrasonic waves with crystals. Changes in ultrasonic
attenuation with temperature can be used to infer information
about the interaction of ultrasonic waves with individual
phonons in the region ωτ � 1 [9], where ω is the angular
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frequency and τ is the thermal relaxation time. Different
causes can be attributed to the attenuation of ultrasonic waves
propagating through them: of these, important causes of
acoustical dissipation are phonon–phonon (p–p) interaction,
thermoelastic loss, dislocation damping due to screw and
edge dislocations, scattering from grain boundaries (dominant
in polycrystalline materials), etc. The phonon–phonon
interaction is the dominant cause of ultrasonic attenuation at
room temperature and above in all types of solids, i.e. metallic,
semiconducting and dielectrics [10–13]. Attenuation due to
thermoelastic loss is negligible compared to total attenuation.
The phonon–phonon interaction gives rise to the energy loss of
ultrasonic waves whose estimation is possible using Meson’s
approach [14–20].

2. Computational detail

2.1. Elastic constants

Second- and third-order elastic moduli (SOEM and TOEM),
C0

i j and C0
i jk at 0 K, have been obtained using electrostatic

and Born–Mayer potentials and following Brugger’s definition
of elastic constants [21]. Repulsive parameters and
nearest-neighbour distances have been used as input data
and interactions up to next-nearest neighbours have been
considered. According to Brugger’s definition, the nth-order
elastic constant is defined as

Ci jklmn··· = (
∂nu/∂εi j∂εkl∂εmn . . .

)
(1)

where u is the crystal free-energy density and εi j is the strain
tensor in Voigt notation.

For cubic crystals, three independent SOEM (C11, C12 and
C44) and six independent TOEM (C111,C112,C144,C166, C456

and C123) occur. Temperature variation of SOEM and TOEM
has been obtained by adding a vibrational contribution to
elastic constants. According to lattice dynamics developed by
Leibried et al [22] and Ludwig et al [23], temperature variation
of SOEM and TOEM has been obtained by adding a vibrational
contribution to elastic constants, using the theories tested by
us for evaluating acoustical dissipation for other fcc and bcc
structured compounds [10–13]. SOEM and TOEM at any
temperature are obtained by adding corresponding vibrational
contributions to SOEM and TOEM at absolute zero, namely
C0

i j and C0
i jk , i.e.

Ci j (T ) = C0
i j + Cvib

i j (2)

Ci jk(T ) = C0
i jk + Cvib

i jk (3)

where Cvib
i j and Cvib

i jk are vibrational contributions to the elastic
constants.

2.2. Ultrasonic attenuation

In the Akhiezer regime (ωτ � 1), a sound wave passing
through a solid can be attenuated by two processes [16].
First, if the wave is longitudinal, periodic contractions and
dilations in the solid induce a temperature wave via thermal
expansion. Energy is dissipated by heat conduction between

regions of different temperatures. This is called thermoelastic
loss. Second, dissipation occurs as the gas of thermal phonons
tries to reach an equilibrium characterized by a local (sound-
wave-induced) strain. This is the internal friction mechanism.

The physical basis for obtaining the attenuation coefficient
is that the elastic constants contributed by the thermal phonons
relax [14–20]. The phonon contribution to the unrelaxed elastic
constants is obtained by taking into consideration the change
in energy of the thermal phonons due to applied instantaneous
strain. The frequency of each mode νi is changed by ∂νi

νi
=

−γ j
i S j , where γ j

i is the generalized Gruneisen parameter and
Sj is the instantaneous strain. It is assumed that all the phonons
of a given direction of propagation and polarization have equal
change in frequency. Then phonons of the i th branch and the
j th mode suffer a change in temperature �Ti

T0
= −γ j

i S j (T is
the temperature). A relaxed elastic constant is obtained after
there is phonon–phonon coupling among various branches and
the�Ti relax to a common temperature change, �T , given by
�T
T = −〈γ j

i 〉Sj , where 〈γ j
i 〉 is the average value of γ j

i . The
thermal relaxation time is

τ = τs = τl

2
= 3K

Cv〈V 〉2
(4)

where K is thermal conductivity, Cv is specific heat per unit
volume and 〈V 〉 is Debye average velocity.

According to Mason and Bateman [16], SOEM and
TOEM are related by the Gruneisen parameter γ j

i and hence
by the nonlinearity parameter, 	 (which is a measure of
anharmonicity of the crystal). Ultrasonic attenuation due to
phonon–phonon interaction in the Akhiezer regime (ωτ � 1)
is given by

αp−p = 2π2 f 2	E0τ

3ρV 3
(5)

where the nonlinearity coupling constant is

	 = 9〈(γ j
i )

2〉 − 3〈γ j
i 〉2CvT

E0
(6)

〈(γ j
i )

2〉 and 〈γ j
i 〉 are square average and average square

Gruneisen parameters, V is sound wave velocity for
longitudinal waves (Vl) and for shear waves (Vs) and ρ is
density.

The Debye average velocity is given by

3

(〈V 〉)3 = 1

V 3
L

+ 2

V 3
S

. (7)

Propagation of a sound wave through a crystal produces
compression and rarefactions. As a result heat is transmitted
from the compressed region (at higher temperature) to the
rarefied region (at lower temperature) and hence thermoelastic
loss occurs, which is given by

αth = 4π2 f 2〈γ j
i 〉2 K T

2ρV 5
L

. (8)

Dislocation damping due to screw and edge dislocations also
produces appreciable loss due to phonon–phonon interactions.
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Table 1. Calculated and experimental [1, 2] second-order elastic constants in (1012 dyn cm−2) and hardness parameter, q(Å), of transition
metal carbides at 300 K.

C11 C12 C44

Present Expt. Present Expt. Present Expt. q (Å)

TiC 5.13 5.13 1.67 1.06 1.71 1.78 0.3487
ZrC 4.70 4.70 1.08 1.00 1.20 1.60 0.3399
HfC 5.00 5.00 1.23 1.05 1.25 1.80 0.3321
VC 5.00 5.00 3.52 2.90 3.54 1.50 0.4239
NbC 6.20 6.20 2.46 2.00 2.48 1.50 0.3823
TaC 5.50 5.50 2.49 1.50 2.50 1.90 0.4002

Table 2. Calculated phonon viscosity due to screw and edge
dislocation of transition metal carbides at 300 K for longitudinal (in
cp) and shear (in mp) waves.

δscrew δedge

Long. Shear Long. Shear

TiC 0.191 0.142 0.358 0.517
ZrC 0.322 0.143 0.726 0.916
HfC 0.810 0.327 0.186 0.229
VC 0.231 0.464 0.275 0.648
NbC 0.213 0.214 0.350 0.563
TaC 0.339 0.396 0.513 0.881

The loss due to this mechanism can be obtained by multiplying
dislocation viscosities by the square of the dislocation velocity.

Dislocation damping due to screw and edge dislocations is
given by [13]

δscrew = 0.071ζ (9a)

δedge = 0.053ζ/(1 − σ 2)+ 0.0079/(1 − σ 2)(�/�)ψ (9b)

where

ψ = ζl − (4/3)ζs, ζl = E0	lτ/3, ζs = E0	sτ/3

� = (C11 + 2C12)/3, � = (C11 − C12 + C44)/3

and
σ = C12/(C11 + C12)

where �,�, ζ , σ and ψ are the bulk modulus, shear modulus,
phonon viscosity, Poisson’s ratio and compressional viscosity,
respectively. Ci j s are the second-order elastic constants.

3. Results and discussion

SOEM and TOEM have been obtained at different tempera-
tures using equations (2) and (3). Lattice parameters and hard-
ness parameters [1, 2] have been used as input data. Values
of SOEM obtained using the present approach have been com-
pared with available theoretical and experimental values (see
table 1) and are in good agreement with experimental values,
except for minor disagreement in C12 and C44 values, which
may be attributed to the difference in the input parameters used.
Incorporating interactions beyond next-nearest neighbour may
lead to better agreement between calculated and experimental

Figure 1. Temperature variation of (α/ f 2)l along different directions
of propagation of the group IV carbides. Curves along 〈110〉
( ) and 〈111〉 ( ) for ZrC and along 〈110〉 ( ) and
〈111〉 ( ) for HfC overlap (however, for values of (α/ f 2) along
〈110〉 the multiple is (E-19) while along 〈111〉 the multiple is (E-18)
for both compounds i.e. values of (α/ f 2) are different).

values of shear moduli. Our calculations of second- and third-
order elastic moduli are reasonable since we have made an ‘ab
initio’ determination of elastic moduli of these transition metal
carbides at different temperatures. There are no elastic data as
a function of temperature for these compounds. Most simple
theories are able to get a reasonable estimate of elastic moduli
at room temperature only by using experimental parameters.
Thus the present approach for evaluation of SOEM and TOEM
is valid.

SOEM and TOEM values have been used to obtain the
squared average Gruneisen number, 〈γ j2

i 〉, average squared
Gruneisen parameter, 〈γ j

i 〉2 for longitudinal and shear waves,
nonlinearity coupling constants 	l, 	s and 	∗

s (which are
measures of the anharmonicity of the lattice) and their ratios
	l/	s and 	l/	

∗
l along different directions of propagation

as given in table 3. Values of the ratio of the nonlinearity
constants along 〈100〉 and 〈110〉 are as expected [18].
Dislocation damping due to screw and edge dislocations, (δscrew

and δedge) have been evaluated using equations (9a) and (9b),
as presented in table 2.

Ultrasonic attenuation due to phonon–phonon interaction
for longitudinal and shear waves, [(α/ f 2)l and (α/ f 2)s]
have been evaluated using equation (5). Temperature
variation of (α/ f 2)l and (α/ f 2)s along the [100], [110] and
[111] directions of propagation are shown in figures 1–4.
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Table 3. Calculated squares average Gruneisen number for longitudinal wave 〈γ j2
i 〉l, average squared Gruneisen parameter for longitudinal

wave 〈γ j
i 〉2

l , and for shear wave 〈γ j
i 〉2

s,〈γ j
i 〉2

s∗ , nonlinearity coupling constants 	l, 	s and nonlinearity coupling constants ratios 	l/	s, 	l/	s∗

of transition metal carbides at 300 K. (Note: s—polarization along [001]; s∗—polarization along [11̄0].)

〈γ j2
i 〉l 〈γ j

i 〉2
l 〈γ j

i 〉2
s 〈γ j

i 〉2
s∗ 	l 	s 	s∗ 	l/	s 	l/	s∗

TiC [100] 4.31 1.59 0.23 — 28.07 2.09 — 13.37 —
[110] 4.53 2.08 1.35 7.83 26.74 12.23 70.79 2.18 0.37
[111] 22.96 6.81 3.98 4.41 160.67 35.89 39.72 4.47 4.04

ZrC [100] 4.76 1.50 0.16 — 33.77 1.50 — 22.45 —
[110] 4.62 1.99 1.04 9.17 30.02 9.44 82.61 3.17 0.36
[111] 39.65 9.39 4.66 6.64 302.05 42.02 59.84 7.18 5.04

HfC [100] 4.83 1.56 0.16 — 35.89 1.45 — 24.64 —
[110] 4.66 1.99 1.01 9.34 32.32 9.15 84.09 3.53 0.38
[111] 42.06 9.74 4.75 6.96 331.22 42.77 62.60 7.74 5.28

VC [100] 6.84 2.62 1.03 — 46.30 9.28 — 4.98 —
[110] 14.14 4.61 2.52 4.93 100.06 22.69 44.41 4.40 2.25
[111] 10.70 5.29 2.66 2.04 65.39 24.01 18.42 2.72 3.55

NbC [100] 4.22 1.67 0.30 — 27.39 2.74 — 9.97 —
[110] 4.87 2.26 1.58 7.06 29.51 14.28 63.59 2.06 0.46
[111] 16.04 5.69 3.60 3.39 108.20 32.47 30.54 3.33

TaC [100] 4.27 1.75 0.37 — 28.47 3.33 — 8.53 —
[110] 5.35 2.43 1.74 6.57 34.38 15.69 59.18 2.19 0.58
[111] 12.99 5.18 3.36 2.88 87.51 30.31 25.98 2.88 3.36

<100>l(E-20)VC

<110>l(E-20)VC

<111>l(E-20)VC

<100>l(E-21)NbC

<110>l(E-21)NbC

<111>l(E-21)NbC

<100>l(E-20)TaC

<110>l(E-20)TaC

<111>l(E-19)TaC

Figure 2. Temperature variation of (α/ f 2)l along different directions
of propagation of group V carbides.

Temperature variation of ultrasonic attenuation due to
thermoelastic loss, (α/ f 2)th (obtained using equation (8)), is
shown in figures 5 and 6. From figures 1–6, it can be seen
that (α/ f 2) due to thermoelastic loss is about 2–5% of that
due to the phonon–phonon interaction, because the larger part
of the acoustical energy is used up in establishing thermal
phonon equilibrium. The temperature variation of the phonon
relaxation time calculated using equation (4) is shown in
figures 7 and 8.

One well-known source of energy loss due to thermal
phonons is the thermoelastic loss that occurs because the
compressed regions are at higher temperatures compared to
rarefied regions. Thus heat transfer from hotter to colder
regions gives larger thermoelastic loss in the low temperature
region [24]. The rate of change of (α/ f 2)l and (α/ f 2)s
with temperature is small in the temperature range 50–200 K
(figures 1–4) due to a smaller rate of transfer of energy
from acoustical phonons to thermal phonons at a rate E0

Figure 3. Temperature variation of (α/ f 2)s along different directions
of propagation of group V carbides (individual curves have different
powers which are depicted on the right-hand side of the figure).
Curve along 〈100〉 ( ) for HfC and along 〈110〉 ( ) for
TiC overlap and curves along 〈111〉 ( ) for TiC and along 〈100〉
( ) for ZrC overlap.

(figure 9). In the temperature range 50–200 K, the energy
density, E0, is small enough to result in less p–p interaction in
these TMCs, causing small attenuation due to p–p interaction.
Phonon–phonon interaction increases rapidly at a constant rate
with temperature like the variation of E0 with temperature.
Therefore attenuation due to p–p interaction increases rapidly,
while (α/ f 2)th becomes constant due to establishment of
an equilibrium condition between compressed and rarefied
regions. Therefore, (α/ f 2)l and (α/ f 2)s increase rapidly and
(α/ f 2)th becomes constant in the high temperature range (200–
500 K). Thus, the temperature variation of (α/ f 2) in these
TMCs are mainly affected by energy density, E0, and follow
similar trend.
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Figure 4. Temperature variation of (α/ f 2)s along different directions
of propagation of group V carbides (individual curves have different
powers as depicted on the right-hand side of the figure).

Figure 5. Temperature variation of (α/ f 2)th along different
directions of propagation of group IV carbides (individual curves
have different powers as depicted on the right-hand side of the
figure).

Figure 6. Temperature variation of (α/ f 2)th along different
directions of propagation of group V carbides (individual curves have
different powers as depicted on the right-hand side of the figure).

(α/ f 2) for longitudinal and shear waves due to
thermoelastic loss is large along [111] in comparison to
along the [100] and [110] directions, due to the fact that the
Gruneisen parameters, 〈γ j2

i 〉 for longitudinal and shear waves

Figure 7. Temperature variation of thermal relaxation time (τth) of
group IV carbides.

Figure 8. Temperature variation of thermal relaxation time (τth) of
group V carbides.

Figure 9. Temperature variation of lattice energy density (E0) of
group V and VI carbides. Curve for ZrC ( ) and VC ( )
overlap, i.e. the energy density for these compounds is nearly the
same.

and nonlinearity coupling constants 	l, 	s and 	∗
s (which

are measures of the anharmonicity of the lattice) have larger
values along the [111] and smaller along the [100] and [110]
directions (table 3).

5
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4. Conclusions

Elastic moduli obtained at different temperatures using
electrostatic and Born repulsive potentials have been used
to study the ultrasonic attenuation properties of transition
metal carbides. Our calculated values for second-order
elastic moduli C11, C12 and C44 for B1 type TMCs are
in good agreement with the available experimental results.
Temperature-dependent ultrasonic attenuation, induced by p–
p interaction, thermoelastic loss and dislocation damping due
to screw and edge dislocations in TMCs shows that the
attenuation is mainly governed by phonon–phonon interaction,
which is mainly dependent on the variation of energy density,
E0, and attenuation due to thermoelastic loss and dislocation
damping is negligible.

Temperature variation of ultrasonic attenuation, (α/ f 2)l
and (α/ f 2)s, obey the Gaussian fitting law (figures 1–4) and
(α/ f 2)th follows this variation:

(α/ f 2)th = (α/ f 2)0 + A exp(−T/t) (10)

where (α/ f 2)0 is constant (in units of (α/ f 2)th, and A and
t are also constants). The phonon relaxation time shows
the exponential decay with temperature (figures 7 and 8).
Although no comparison has been made due to the lack of
reported attenuation values in the literature, yet the agreement
in values of elastic constants and the nature of ultrasonic
attenuation in other similar materials justify the present
approach.
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